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Two-phase concave-type corner flows 
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The flow of a two-phase system past an arbitrary corner has been studied by 
Healy (1  970 a), using the method of small perturbations, and some results were 
presented for convex-type flows. This paper, which is an extension of the above- 
mentioned one to concave-type flows, also compares the particle streamlines 
found from the perturbation with those obtained by numerically integrating the 
unperturbed equations. The agreement is found to be quite good for 5 M 0.2 
and excellent when 5 = 0.1 or less, where 5 = ar is the particle parameter, 01 is 
proportional to the speed of the fluid and T is the particle relaxation time. The 
nature of concave corner flows abruptly changes when the angle p through 
which the flow is deflected is 90". For /3 < goo, all particles collide directly 
except those approaching on streamlines near the stagnation line. WhenP = 90" 
the critical value of c is gc = 0.25 and, for 180" > /3 > go", only particles approach 
ing on streamlines near the stagnation line all collide. No particle-free zones 
exist in concave-type flows and the partide density increases monotonically in 
the downstream direction along all particle streamlines. The approximate effects 
of viscosity are also discussed. 

1. Introduction 
The flow of an inviscid incompressible fluid with embedded small spherical 

particles past an arbitrary corner has been studied by the author (1970a), using 
the method of small perturbations. The results, which are valid for small initial 
particle density k,, were confined to convex-type flows and an approximate fluid- 
separation model was also considered. 

The purpose of this paper is: to extend the above-mentioned work to concave- 
type flows; to compare the particle streamlines found by the perturbation 
method with those obtained by numerically integrating the unperturbed particle 
momentum equations; to study the critical collision conditions and the approxi- 
mate viscous effects. 

The perturbed equations, and other references thereto, are given in the first 
paper and the solutions are here adopted with little further discussion. A new 
assumption of non-sedimentation must now be added; i.e. if a particle collides 
with a wall it is assumed absorbed by it and thus removed from the flow. 
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2. The results of the perturbation 
The unperturbed fluid velocity is 

u 0 -  - - arn-l cos n$ ro + urn-1 B i n n $  +o, (1) 

where a is a large constant, rand $ are the co-ordinates, ro and +o are unit vectors, 
and n is the geometrical parameter 7r//3, with /3 the angle between the wall 
and the stagnation line. The values of n and p for the geometries here considered 
are given in figure 1. 

(0) (b) (4 
FIGURE 1. Flow configurations. (a)  n = $, p = 2 ~ ;  

( b )  n = 2, p = 4,; (c)  n = 3, p = $r. 

The equation governing the particle density was found to be 

where k is the ratio of the particle to fluid mass densities and 6 = ur, with T 
the particle relaxation time. On using the method of characteristics, ( 2 )  yields 
one set of characteristic surfaces that is coincident with the particle streamlines 
and an integral surface that is represented by the variation of the particle 
density along the set. The latter, and the particle streamlines, are defined by 

+-n Sinn-1(2-n) n$-(n-2) (n- l )gIs in2(w- ' - l )n~d$ = c (n+  2 )  (3) 

and r2sin2$tant$ = c (n = a ) ,  (4) 
where c is the streamline constant. The integral surface of (2) is given by 

and k/ko  = tan[$ (n = 2 ) .  ( 6 )  

(7 )  

From (3),  the co-ordinate of a particle streamline is 

r = [c + (n - 2) (n - 1) C/sin2(n-'-1)n$ d$]l!(2-n)/sinn-l m$ 

and the innermost particle streamlines, or zone delineation curves, are obtained 
when c = 0. So long as n < 1 these curves are spiral-shaped; they start a t  the 
upstream side of the corner, partially encircle it and trail downstream, thus 
delineating a single-phase zone. In the range 1 < n < 2, the sign on the integral 
in (7) is negative and hence no real particle-free zone exists. Moreover, when 
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n > 2, the p-theorem shows that the integral diverges if either of the limits 
$ = 0 or n-/n is included in the range of the integration and, in addition, the 
exponent l / ( Z  - n) is negative. The implication is that no finite particle-free 
zone exists and that it is necessary to assume that the initial position of the 
particle is ( yo ,  # o ) ,  where go > 0. 
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FIGURE 2. Particle streamlines (n = 2, c, = 2; I%,, = lo). 
-, perturbation theory; - - -, exact. 

I n  all concave flows, the fluid and particle velocities increase rapidly with 
distance from the corner and, since the interest of this paper is in the flow near 
the latter, such large velocities are ignored and it is assumed that the fluid and 
particles have a common velocity at  the initial co-ordinate ( yo ,  q50). 

Evaluation of (3) for n > 2 shows that almost all particles collide directly and 
seem very little influenced by the turning motion of the fluid. Those most strongly 
influenced approach on streamlines near the stagnation line and further study 
is deferred until 3 4. 

If the particle streamlines in stagnation point flow are plotted directly from 
(a),  the particles with larger values o f t  approach the corner on streamlines nearer 
to the line of symmetry. For purposes of comparison, it is desirable that all 
particles approach on the same streamline, which necessitates choosing the 
streamline constant c as a function of 5 and the initial co-ordinate x,. In  the 
Cartesian system, the result is 

where cf is the constant of the fluid streamline, defined by xy = cf, along which 
the particles approach. This relation has been used to compute the streamlines 

3-2  
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shown in figure 2 .  As expected, when 6 = 1 the perturbation theory is a poor 
approximation and the result is a straight line y = constant. The next largest 
value o f t  here used is 0.2 and, from the shape of the trajectory, this is close to 
the critical value, which is discussed in $4. The particle density distribution for 
n = 2 was computed using (6), which is independent of radius, and plotted in 
figure 3. The density gradually increases with angle, being zero on the stagnation 
line and increasing to infinity on the wall. It is also clear that the particle density 
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FIGUSE 3. The particle density distributions (n = 2, Q. cf = 2 ) .  

is not uniform as the fluid approaches the corner. In  an earlier paper, Healy 
(1970b) has studied the flow of the same type of system past a flat plate of finite 
width standing normal to the approaching stream. In  this case, the particle 
density remains almost uniform until a distance of about one plate width from 
the stagnation point is reached. Thereafter, the density increases rapidly but 
does not become infinite. 

For the flow past a wedge, (3) and (5) are easily evaluated by using Simpson's 
rule. However, from the previous study, the author has had a Runge-Kutta 
computer program available for a general corner and has used this instead to 
evaluate the ordinary differential equations derived from ( 2 ) .  The particle stream- 
lines for n = $ are shown in figure 4 and it is evident that the magnitude of the 
perturbation has decreased relative to that for n = 2 .  It is expected that the 
perturbation gradually becomes smaller as p -+ 180". The particle density in- 
creases monotonically along the particle streamlines in the downstream direction 
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as shown in figure 3; the amount of increase decreases rapidly if streamlines at 
a greater distance from the origin are chosen, i.e. greater values of cf. 

FIGURE 4. Particle streamlines (n = +, cI = 2, ro = 10). 
-, perturbation theory; - - -, exact. 

3. Some exact results 
The unperturbed particle momentum equations for small k, are 

av, av, ux-v, 
VZ--+V - = __ 

ax ?d ay 7 ,  

aV - uv-vu v , y + v  - - -. 
ax y ay r 

An examination of this system shows that the particle streamlines dy/dx = wy/v, 
form characteristic surfaces that are common to both equations. Using this rela- 
tion to eliminate y from the independent variables yields 

Tv,(dv,/dx) = u, - v,, ~v,(dv,/dx) = uy - vy. (9) 
Even in the simplest case of stagnation point flow, when uz = -ax  and 

uy = ay, the set of equations (9) is not analytically solvable; the first equation 
may be solved exactly, but w, is found in an implicit form only. On the other 
hand, the system is not difficult to solve numerically; it has already been done 
by Michael & Norey (1969). For general corner flow, the system is best con- 
structed in the following parametric form : 

t(dv,/dt) = - w, - (x2 + cos [(n - 1 )  tan-l (ylx)],  
t(dv,/dt) = - vy + (x2 +y2);(lZ-l)sin [(n - 1) tan+ (y lx )] ,  

(dxldt) = v,, (dyldt) = vV, 
where 6 = a7 and each velocity is now divided by a. 
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It is assumed that the particle and fluid have the same velocity at some initial 
point (xo,yo) and, with this as an initial condition, the system (10) has been 
evaluated for n = # and 2 using Runge-Kutta procedures, and the results are 
shown in figures 2 and 4. In  general, for 5 = 0.1 or less, the results are coincident 
with those of the perturbation theoryand, for 5 = O.2,for mostpracticalpurposes, 
the difference is negligible. Equation (4) provides an excellent example of per- 
turbation theory at  its best; this very simple relation yields results (see figure 2) 
that, for & near 0.1 or less, are as good as those of equations (10). 

4. The critical collision conditions 
These conditions may partially be established by considering the manner in 

which the particle approaches the corner along the stagnation line. The particle 
momentum equation along this line is 

(11) 

and is of the Emden type, where 5 = ar and v is now replaced by w/a. 
For stagnation point flow n = 2 and the equation may be solved exactly. 

An analysis by Healy (1970b) of its behaviour near the singular point showed 
the critical value of 6 to be 0.25. A detailed account of this type of analysis is 
given by Michael & Norey. It is also found that & is independent of the initial 
co-ordinate x,, of the particle. 

The other ranges of n that are of interest are 2 < n < co and 1 < n < 2 .  For 
some values of n in the former range (1 1) is also of interest in astrophysics and, 
for this reason, has received some attention. Fowler (1931) has established the 
existence and uniqueness of its solutions and also has studied the asymptotic 
solutions in the limit x --f 0. Although the ranges of the variables and the initial 
conditions in the astrophysics case are considerably different from those in the 
present one, the analysis may readily be adapted. 

&@v/dx) f v + xn-1 = 0, 

Equation (1 1 ) may be expressed in the following parametric form : 

dyldt + y + vn-1 = 0, dvldt = 7, (12) 

where v = ~ 5 l K n - 2 )  and 7 = ~,5n-W(%-V/a  (13) 

and the initial conditions are 

t =  0) v = v o ,  y = -vt-l- - 70% 

The locus of all such initial points ( y o ,  yo) in the phase plane provides envelopes 
for the solution curves, as shown in figure 5; the region under the envelope being 
the one of interest. In the limit 5 3 0, these envelopes are also the trajectories 
for particles starting at any point (v,,, yo) with the prescribed initial conditions. 
For a given n ( > 2 ) )  as the initial co-ordinate vo is increased, the trajectory for 
finite 5 deviates increasingly from this envelope; two such trajectories are shown 
for n = 4. Ultimately, a point (vc, ye) is reached from which the trajectory becomes 
asymptotic to the line y = - v, in the limit Y --f 0. This trajectory, which was 
called the ‘E-solution’ by Fowler, is, in the present case, the ‘critical trajectory’. 
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Particles for which vo > v, reach the origin with a finite velocity, i.e. collide, and 
those for which vo < v, require an infinite time to collide, Using the asymptotic 
property of the solutions established by Fowler, the critical trajectories, or E- 
solutions, were found by numerically integrating (12) backward in time; the 
results for n = g, 3, and 4 are shown in figure 5. The critical points are 
v, = x , @ ~ - ~ )  and, therefore, one may consider that a critical co-ordinate x, exists, 
for a given 6, or that a critical 6 = c, exists for a given xo. 

= ,&-1/(n-2) 

FIGURE 5. The critical and other trajectories in phase plane. -, critical trajectories; 
- -_  , envelopes q = -vn-l; - - - - , non - critical trajectories . 

If (10) are transformed, using (13), numerical integrations show that the above 
results are valid for particles approaching along streamlines near the stagnation 
line. Particles approaching on streamlines somewhat further away seem unaware 
of the turning motion of the Auid and collide rapidly. Some trajectories for n = 3 
are shown in figure 6. When v < v, and y 6 0.1 approximately, these trajectories 
all seem either to intersect with the downstream wall or to become asymptotic 
to it. 

Before considering the particle trajectories in the range 1 < n < 2, it is in- 
structive to study the behaviour of (11) near the singular point in the limit 
6 -+ 0. In  this case v = u = dxjdt = - xn-l and consequently 

t--to = -pw. 
When n = 2, an infinite time is required to reach the origin, but for n c 2, in 
the limit x -+ 0,  t goes to  a finite value always. Furthermore, since 1.1 2 [ u I  for [ 
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finite, all particles approaching on streamlinesnear the stagnation line collide near 
the apex of the wedge. On the other hand, it has been seenin figure 4 that particles 
approaching along streamlines further away do not all collide. Integrations of the 
transformed system (10) for n = $ show that when I& = y,,/g2 6 1.0 roughly, all 

v = XE 

FIGURE 6. Some particle trajectories for n = 3. 

v = ./[Z 

FIGURE 7. Some particle trajectories for TZ = +. 
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the particles collide. The greater the value of co, the fwther downstream the 
particle collides. Trajectories with various (co, v,,) are shown in figure 7; for c0 
greater than about 2, the particles do not seem to collide. 

5. The approximate viscous effects 
In  most of this paper a high-speed flow has been assumed, and a boundary 

layer must be considered if the fluid is viscous and R, % 1, where R, is the Reynolds 
number based on the distance from the corner. A further requirement is that 
the length scale on which the fluid changes occur must be much greater than the 
particle dimensions, i.e. d/x< (Rz)i, where d is the particle diameter. These 
requirements are satisfied by a wide range of flows. 

The particle may enter the boundary layer a t  the stagnation point or elsewhere 
and, in general, moves under some combination of the following forces: (i) the 
Stokes drag, which has no component directed away from the downstream wall, 
(ii) the inertia of the particle when it enters the boundary layer away from the 
stagnation point and (iii) the force exerted across the streamlines by the relative 
velocity between the particle and the fluid. Neglecting the third force means 
that there is no way by which the particles can leave the boundary layer, once 
they enter it, and the net effect is sedimentation. The third force, although small, 
can have a sedimenting or desedimenting effect on the particles and, although 
it has been much investigated since it was reported by Segr6 & Silberberg (1962), 
its precise nature and magnitude have not yet been determined but, on the 
basis of experimental evidence, one may qualitatively infer that its effect will 
be that of desedimenting the particles near the stagnation point. 

6. Summary 
The perturbed equations for small initial particle density have been analytically 

solved in a previous paper and the results for concave-type corner flows are 
here evaluated using simple numerical procedures. 

Concave flows have no particle-free zones and their nature, ingeneral, abruptly 
changes at /3 = 90". For ,8 < 90" numerical integrations show that, with the 
exception of those that approach on streamlines near the stagnation line, all 
particles seem unaffected by the turning motion of the fluid and collide directly. 

WhenP = go", the critical value of t  is found to be tc = 0.25 so that, for t < 0.25, 
the particles should not collide whereas, for 

In the range 180" > p > go", there are no sudden changes and the perturbation 
effects become gradually smaller as /3 -+ 180". All particles approaching the 
origin on streamlines near the stagnation line collide in the vicinity of the apex 
of the wedge and the critical collision conditions then involve 5 and the initial 
particle co-ordinates. For n = 2, particles with initial y co-ordinate within g2 
approximately of the stagnation line collide near the apex and those with initial 
co-ordinate greater than 2c2 roughly do not seem to collide. Those approaching 
on streamlines between these limits collide at  varying distances along the down- 
stream wall, or become asymptotic to it. 

> 0.25, they should. 
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As is characteristic of convex-type flows, the particle density increases mono- 
tonically in the downstream direction along the particle streamlines in concave 
flows also. 

A particle moving in a shear flow with a velocity relative to that of the fluid, 
experiences a force normal to the streamlines, which is not yet fully understood. 
This force is expected to cause some desedimentation in the boundary layer but, 
generally, the viscous effects are expected to promote sedimentation. 

The accuracy of the perturbation theory has been checked by a numerical 
integration of the unperturbed equations. For 6 M 0.1, the agreement is excellent, 
whereas, for E E 0.2, it is quite good. 

The Runge-Kutta procedures used by the author have been carried out on an 
IBM 7040 digital computer using a fourth-order program with an automatically 
adjustable step. Whenever possible, the program was checked using the limiting 
case o f t  --f 0, whose exact solution generally is known. 

The author wishes to thank Professor Wuest for helpful conversations during 
the course of this work. 
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